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NOTATION

Ap Area of frame

Alt A2 , AV, A4  Integration constants

IBI Bay matrix; see Equation(8]

b Faying width of frame

D ___

12(1- 02)

E Young's modulus

IF1 Frame matrix

f'1' 2' f3' f4 Deflection functions

g, 92, g3 , 4 Deflection functions

H (AF + bhl[)V + -0a2p 2 sinh K11 + Vi1-a2$ 2 sin K21 +
2h -
"a-V•'--*404 (cosh K 11 - coe K 21)

A Shell thickness

I Moment of inertia of frame section about radial axis

K 0 / a2/3,2

K2  
a VI +a f3 2

L Center-to-center distance of frames

I Clear distance between frames

Hi Longitudinal bending moment in shell

P Pressure

PC Collapse pressure

R Radius to middle surface of shell

RF Radius to center of gravity of frame section

IS1 Bay matrix; see Equation [Ili
2hor,

T P~C

V Longitudinal shear stress in shell.

a Distance along shell generator

y Radial deflection of shell
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20A (2-)

4 3 (1 -12)
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8 Differential shear function

Poisson's ratio

a Stress

019 02' 63, 9 '4 Functions defined by Equations [411, [441, (461, and [481,
respectively
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ABSTRACT

Recent developments in structural research on circular ring-stiffened

cylinders subjected to hydrostatic pressure have indicated that refinements of

the standard strength analysis are required to account for the effects of discon-

tinuities such as a heavy frame or bulkhead or variations in shell thickness. A

procedure has been developed for computating axisymmetric stresses near these

discontinuities in a cylinder in which the thickness of the material does not vary

between a pair of stiffeners but may change from one side of a stiffener to the

other. The results of this analysis indicate that stresses higher than those pre-

dicted by a standard comlutation will usually exist near these discontinuities.

A method of reducing this effect by modifying the geometry near these points is

also presented.

INTRODUCTION

The strength of thin-walled, stiffened, cylindrical shells against axisymmetric yielding

is usually computed from an elastic analysis of Von Sanden and Gunther. 1 This analysis gives

the stress distribution in the shell, and collapse is assumed to occur when the stresses at the

middle of a bay exceed theyield point of the material. A imore recent analysis developed by

Salerno and Pulos 2, accounts for the longitudinal moments resulting from the end pressure to-

gether with the radial deflection of the shell and, therefore, gives more accurate stresses.

Although neither of these analyses indicates any difference in strength between bays, it has

been observed experimentally that failure by axisymmetric yielding almost invariably occurs

in the full-length bay nearest a bulkhead or heavy frame. To determine the effect of end con-

ditions on the stresses in the shell, a modified Salerno and Puios analysis is derived which

takes into account variable frame spacing and size and changes in shell thickness; it can be

easily extended to variations in radius between adjacent bays.

To offset the weakening effect of the heavy member, it has become customary to reduce

the spacing of the first frame from this member. This practice, however, merely forces the

weakening effect of. the heavy member into the next bay without appreciably increasing the

collapse pressure. Since it is usually undesirable to reduce the length of more than one bay,

another method to increase the strength of the end bays is proposed in this report.

ELASTIC STRESSES IN FINITE CYLINDER

The theory of Salerno and Pulos assumes an infinite closed cylinder composed of a

linearly elastic material of uniform thickness and radius reinforced by equally spaced, equal-

sized frames and subjected to hydrostatic pressure. A typical bay of this cylinder illustrating

IRefe•stec we listed on page 24.
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Figure 1 - Typical Bay of the Salerno and Pulos Cylinders

the initial and deformed shapes is shown in Figure 1.
The deformation defined by the radial deflection y as a function of z must satisfy the

differential equation

d4 y 12(1-ve) PR d 2y 12(1_&,2) " PR 2
- t -.- + y- (1-v12) 0

dx4 2EP3  d_2 R2A2  [Y-I ;- Eb [1]

where E is Young's modulus, v is Poisson's ratio, and the other tems are defined in Figure 1.

Setting

a4  3(1- aP2 )R 3 and pR2

R 2h2 2Eh E 2

this simplifies to*

y IV + 4a4,32 yf+ 4a 4 (y_y,) 9) (2

Note that y. is the deflection which would occur if the stiffening frames were not present.
One form of th- general solution of Equationa [1] or [(1 -is

y = A 1 cosh KIx cos K2 Z + A2 sinh Kt: sin K2 Z + A3 cosh Kim sin K 2 :

+ A4 sinh K 1 : cos K 2 Z + y Sal

where K1 =a106la2,2 and K2 =a1i + a2,62. The derivatives of y are readily obtained in

the following form

y'. (AIK 1 + A2K2) sinh Klz cos K2X + (A2K1 - AIK 2)'cosh Klx sin K20'

+ (A3 K 2 + A 4K 1) coshKlxcos K2 : + (A 3K 1 - A4 K2) sinh K 1x sin K 2 . [3b]

*The solution which follows is taken from Reference 3.

2
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y"-(A,(K2,K2 2A2KK 21.,osh x, coo R:•2 + fA02 (K2,- K2,

sinh K 1 sin K2X + [A3(K• - K2) - MA4K1K2] cosh K a sin K2 .
+ [.44 (K2 - K2) + A3 A' K K sinh KIt cos K2 . [8c]

y'. [(AK I(K - 3K2) + A2K2(8KA' - K22) sinh K1. coo K2. + (AlK 2 (Kn - Wk'2

+ A2K 1(A' K~ )I c2 s 22~ si + [A3K2(3K? - K2) + A 4 K(K? 1-

cosh K1z oos K2x + (A3K1(1(? - 3K,) + A4K2(K2 - 8K3)1 sinh K1x siný K2' [3d]

Let,
I/- A +bh Vl+ aj9 in KI+ r-a # si K 2A + -a a404

(oosh KI{ - cos K21) [41

where AF is the area of the frame cross section* and 6 is the faying width of the frame.

Applying conditions of coutinuity and equilibrum, Equations [3] for the alerno and Pulos

cylinders may be reduced to:

i Y, f;(.)] [fSa

A

a H 3 ,.H f2(X) [5b1

A F [5c]2a Y1 H • tf3(X),[e

Y ", AF

2a3 Y

where

( -(1 - .2P32 [cosh K'z sin Kt2(,-) + cosh K 1(l-x) sin K2 zJ1+V +02 p-2

[sinh K[x cos K((1-:) + sinh K1 (1--) cos K2z] [6a]

fl'(2:)f '() .= 52 [sinh/K'x sin K2(l-0) - sinh K1(l-z) sin K2.] [6b]K1. --- e--
a

-- - Vri a . 2 p2 [cosh K z sin. K4 1-4) + cosh K l(I-x) sin K(23 - fli +a23

202
[sinh Kiz cos K4(1-:) + sinh Kl(l-z) cos • NO]

*Greater accuracy is obtained by using for AF the value obtained by multiplying the true area of the section by

R/RP whbet RF in the radius of the center of gravity of the frame.

8



• 4(0f;" ( . 21 2 [sinh K r sin K 2 (-4) - sinh Kl- a) sin k01 4ip-44

[cosh Kt(L-z) c0s Kt- cosh Klz cos K2 ([-) (6d

In an actual structure, the presence of bulkheads or heavy frames precludes the assump-

tion of one deformation pattern -for all bays as assumed in the Salerno and Pulos analysis.

However, an approximate relationship can be found by computing y and its derivatives at a

distance from the bulkhead in terms. of the conditions at the bulkhead and by assuming that

these will approach the values computed by a Salerno and Pulos analysis as the distance in-

creases. Basically, symmetric deflection assumptions of Salerno and, Pulos are replaced by the

matrix equation

RIBo s&p "IBIo,,i * [71

where

Y

V"

•ao

181 202.18

Y

26

The subscript 0, i denotes that 1IBI is to be evaluated at the bulkhead or at a frame (x-0) in

the ith bay from the bulkhead, and the subscript 0, S&P denotes values at a - 0 in the infinite

cylinder. Since Equation [71 is rarely exactly satisfied, 1B10 ,l will be taken such that it is

most nearly satisfied by a "least-squares" approximation consistent with the bulkhead con-

ditions.
The basic problem, then, is to determine 1BIoj in terms of the bulkhead condition IBI o 1

so that Equation [71 and a least-square estimate can be used to determine 1810,1. If

Equations [31 are evaluated at z - 0, they can be reduced to

A, " Y(O) - . [ga]l

*0' could as gasily have used -BILse, IB 1,i.

4



+ (Y(O)-y o,/ (9b1

A4  1 r(.Y'(o))(1 2o28'2) "(Y 0)) 1 [9d]Lk 02p2 -3 y T I/

Now, substitution of Equations [.1 into Equations [31, which will yield conditions at any point
of the bay, gives

IBIzXi ' IStK'j x IBIo,1  when z : 1i [10]
where ISI, , is defined by Equation [11] on page 6.

The identity equation y - y,, which holds throughout the bay, is included in Equation [101
for reasons of conformableness which will be apparent later. Replacing z by 11 and letting
i I in Equation [101 gives

IBIJ. 1 =-'Sl x BIo, 1  [121

IBi1, , now denotes the boundary conditions at the end of the bay away from the bulkhead. Itis possible to assume that 1811.1= s-, sap and to solve immediately for IBI'o . This will
not give a very good approximation because I1 is usually too small. Inorder to obtain IBIS,
at a greater distance from the bulkhead, JBI must be found on the other side of the frame. The
conditions on both sides of a frame are shown in Figure 2.

2 \
Mi ([i Mi+l (0)

Y' 0,

Figure 2 - Loads and Deformations at a Frame
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Assuming that the faying width b remains straight, four equations can be obtained from

considerations of continuity and equilibrium. Obviously

Yi 4 1 (0) = Yi(li) + 6 yi'0ld) 13a1

Yi4 1 (0) =Y(i [13b]

Equilibrium of vertical forces yields

Vi(Li) - Vi+ I (U)) - Pb + E fL) R+1bcn
L 211R

Moment equilibrium yields( bSk

IV (i ) - Ai +, (0) + [ Vi (1i) + V. ,() - y(. ( i) 2 [13d]

where IF * is the moment of inertia of the frame about the vertical (radial) axis. It should be

noted that A may be selected from either bay as long as AF + bh represents the total area of

frame and taying width of shell and IF +(b 3A/'12) represents the total moment of inertia about

the radial centerline. The moments and shears are obtained in terms of y" and y"' by the

relations

H = - Dy", [14]

V = - Dy"" [151

where D u -

1(1 2) for a cylinder.

Substituting these expressions into Equations [131 and rearranging gives:

IBIo, i+l = I ,i+, x IBIl,, [161

where

R
*Greater accuracy is obtained by using for IF the value obtained by multiplying the true I of the section -.

RP
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The double subsc'ipt i, i + 1 indicates a frame between i and i + 1 bays ffom the bulkhead'.

Equation [16] includes the identity equation

(Y.) j +1(Y" iU 1 (Y~+ (yU)•

and allows the shell parameters (except radius) to change.
Substitutior of Equation [Ill into Equation [16] gives

IB! o,j+1 r 1II,j+, x ( 'l,i I0,) [18x

By repeated application of Equation (181 we may obtain

IBIo~i+. = !Fli+m-,, ji+ x IS 1ti+m-1 x . x )(F 1 ,j+1 X IS I.. x .lOi [191

For i - 1 Equation [ 1q] may be shortened to

IBI.om+I =IF ,SI:m+ii X lB!o 1  M201

where IF, SIM+1,, is the product of the IF! and ISI matrices in the order of Equation [191 for

all' frames and bays between the (m + 1) bay and the bulkhead'. Now if the product for matrix

IF, Sj,+1 ends with at least two consecutive identical bays, Equation [71 will be very nearly

satisfied by i - m + 1. Almost all problems of practical interest can be carried far enough to

satisfy this condition, and it will be assumed hereafter that IF, SIl, + does in fact terminate

at such, a point. Substituting Equation [201 into Equation [71 gives

G'•[,S &p =P ;SIm+,+I x × BIO', I[

As previously noted this is not exactly true, but a least-squares process can be used to

estimate two of the bulkhead conditions if the other two are given. Any pair may be used as

the knowns, but y and y'".will be used here because they are the most readily evaluated' at a

bulkhead at pressures sufficiently high to cause yielding at the bulkhead.** Setting

I I,

*m now Indicates the number of frames from any starting bay i.

**See. Appendix A.

9



sand neglectlng the identity equation, Equation 2911 reduces to

alu + ,Rl V + >', a 122a)

2 U +)32 V + Y2 - 0 [22b]

3a P ,3 + )'3" 30 (22c0

a 4U 04 + N4 - 0 (22d]

The method of least-squares shows that u and P are given by

U .I *$ y - Xaylj3 2
u = [231

10a2Xp 2 ~(y ~2

£aflay- !iyYa 2  [241

Combining u and' v with -the-known values y, y/*2a2 , and y/. gives the complete column matrix,

1B1o, I, and the column matrix IB'o, at any other frame is then found by multiplication by the

IF, S81, 1 matrix. Equation [101 then completely determines the deformations, and hence the
stresses,, in any bay.

OPTIMUM DESIGN FOR END BAY

The analysis of the previous section is applicable to an axially symmetric structure

composed of circular cylindrical bays with a common axis and radius. The length of bay,

thickness of shell, and Young's modulus may vary from bay to bay; the size of stiffeners may

also change.
In actual practice, however, all these parameters are usually constant except for iso-

lated interruptions such as bulkhead,, heavy frames, and conical reducer sections. Analyses

made on several cylinders in the range of current submarine design indicate that there is

usually a bay near any bulkhead or other variation of geometry which has larger elastic circum-

ferential membrane stresses than those bays farther from the bulkhead. The following design

method has been developed to eliminate this weakness.

For this design procedure a long, ring-stiffened cylinder of uniform geometry composed

of a ductile material and terminating at a relatively rigid bulkhead or other discontinuity is

assumed. It is desired that the stress pattern caused by the bulkhead shall not cause any bay

to be weaker than a bay 1more distant from the bulkhead. It is apparent that, if Equation [21) A
is exactly satisfied for some m, then all subsequent bays will have the Salerno and Pulos1

10



stress distribution. To satisfy Equation [211, two additional parameters'are required. If

they 4re selected from the geometry of the first bay and first frame, and Equation [211 -can be

satisfied for m - 1, the 3tress pattern of the, second and all subsequent bays will be identical.

The length l1 of the first bay and the area AFt of the first frame are selected as the parameters

to be determined. Since stresses are nonlinear functions of pressure, this determination should

be made for P - P,, the expected collapse pressure.

It is more convenient now tor select the origin, z - O,.of the first bay at the first frame,
while the origin for the second or typical bay will remain as it was. The nomenclature for this

case is shown in Figure S.

I, 12

Figure 3 - Nomenclature for End Bay Design

At the right of the frame we set

1B10.2 -,IIBoS, (2s51

From Equation [161

JB10,1 "IF*12,1 x1JBIO,2 [261

where IF*12,1 is identical to [F 12,J with the second and fourth columns multiplied by (-1).

Since y'sap (0) 0, substituting Equation [251 into Equation [261 and rearranging yields

YI(O) - V/s&Pp(0) = 0 [27&1

Y1'(o) YAPe (0)
-,- - - 0 [27b1a a

11



Y1'ý (,0) YS"p (0) AF+b
- - aiO F + (A &P (0) - (ba) Yj"p (0) + (b6) 2 Y (27c]

Y .. -(0) yi,, (0) AF + bS
f2 (61 -- ,,P (0) - 2 Y4' p (0) + 2 (ba)y. [27d]2ap•= bh JSP "

It is now convenient to define 8 and AV as follows:

AV V1(O) - Vs&p(O)8 =--- =[-]:
4W3 D 4eSD

whence Equations (27cJ and [27d] may be written as

- S-([a)8 [27c']

2a2 ae2

y'ýý(o) Y "'• (0)
=--28 [27d'11

2-2a3 3

The difference between Equation [101 for Bay 1 and Equation (101 for Bay 2 is

IBlZ1 - I ,BI.2 S1,, X iBIo. -B ,10, ,2 1 02A]

since under the assumptions of this section [SI.,i is the same for all bays. From Equations

[271

0
B-I_ 1,,- [B1,0,2 = (baO8 (801

-25

0

and, for x.= 11, Equation [291 becomes 0
0

1 BI II - I B1:11, 2 = :S111, iX - (ba)a [8 11
- 28

0

Now, since ISI11 and R1BI1 .2 are completely known from the geometry and Equations (111 and

[51, respectively, and since there must exist two boundary rela tions on IBI~~1*i Equation,

[311 represents four equations in the two unknown boundary conditions and the two parameters

i1 and S. Equation (281 -defines 8 as a function of the difference between the shear on one side

of the first frame andr that on the other side. This indicates that the area of the first frame

*Maes subject is discussed in Appendix A.

12
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must be altered to maintain the assumed conditionk. Since the S&P frame is in equilibrium

except for the load AV, a corresponding A AF is computed from the equilibrium expression

A A AV R2

S2r . ([9)

and Equations 15a] and [28] as

A = [33] *
O " -4 A H ( 0 ) ]

assuming a solution to Equation [311 exists then Equation [311 and the two known boundary

relations will completely determine the geometry necessary for the-condition that the second

and all subsequent bays will have identical stress patterns at the collapse pressure. This is

developed in detail in Appendix A. A sample solution is presented in Appendix B.

To determine the strength of the first bay, Equation [291 is written, after substitution

of Equation [30], as follows:

YI(-_) - Y2 (Z) =- 91 Oc) [84&1

y;(X) - Y (;)

a ' _- 89 2 (x) [34bD

.2  93 ( [34c]

- 2
1  = -8g 4 (z) [34d]

2a 3

where

cosh K z sin K2 a sinh K 1 z cos K2z sinh Kz sin K2 [
g_ + {b a) I- .]

V7,•) • + U-202 ¢rI 02:32' V 1-0404

MIhe scw addtional ma required will, of corese, be given by ( RAF

v y



'(A 9'sl( K2 sink K( ohk a sin K t
V2 .. 1 2 1 I i 2a

slub ( 1 cog k 2 .\,K2 [35'b1oA's

+0p )r_ 1- a 2#2

Binh+ K a +a(csh K acos KfV __aa22

a2 p 92  So
- sinh KI asin K2  35c]

a ooshnI uus 2 w l sinhKxsinK 2 .
+ -- "1[a(- B2sihK2 .°°gK2 .. 1 ÷a 2I3 2 osh K1 z sink 2 ) ( 35d]

2$2
+ 2

For cylinders of interest here, it will be true that Y (/1• < v2(1 Yl' 0 z)> y2 " (/),

and 1<1 -. If this is so, then IX (a)> 0 for 0<a •13 and 93 (1) > 0 near the middle of the
bay. Thus the maximum longitudinal stress near the middle of the first bay will be somewhat
higher than that of a typical bay. However, tLe average and also the maximum circumferential
membrane stresses of the first bay are lesS than those of all subsequent bays. Hence the first
bay should withstand a higher pressure than the typical bays.

DISCUSSION

The analysis of this report is, of course, limited to small deflections in axially sym-
metric, thin-walled cylinders. Therefore, cylinders with the ends designed by the method out-
lined here which fail by an axisymmetric shell yield should have themaximum obtainable
strength. It is logical, also, to expect such cylinders which fail by shell instability to have
at leat as high a collapse pressure as can be obtained with any other end design.

In applying the analysis of this report, there ase a few points to.be remembered. This
analysis, which is analogous to the Salerno and Pulos solution for the infinite stiffened cylin-
ders, gives results which are nonlinear functions of pressure. Familiarity with the Salerno and
Pulos solution should not be allowed to lead one to believe that this nonlinearity is negligible,
since the variation in deflection near a rigid or nearly rigid bulkhead may easily be five or six
times that in a bay remote from the bdkhead, thus greatly magnifying the "beam-column" effect.
In addition, at pressures near collapse there will be a change of boundary conditions due to
higher local bending stresses near the bulkhead which produce a "plastic hinge" at a pressure

14



well below that which causes collapse of the cylinder. Both of these nonlinear effects ame
even more important where an outward negative deflection is expected, such as at the Juncture
of a cylinder witA the large end of a cone. For these reasons caution must also be exercised
In interpretation of experimental strain data from a cylinder designed by the methods presented
here, since the data taken at low pressures will always show greater strains near the middle
of the second bay than in any other bay. It is only when the pressure nes the collapse
pressure' that the strains in the second bay will approach those, of spbsequent bays.
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AI0ENDIX A

BOUNDARY CONDITIONS AND SPECIFIC PROBLEMS

The usefulnessL of this analysis in design is, of course, limited by the ability of the

designer to estimate boundary conditions. Although it is not necessary that the boundary

condition be known absolutely, an attempt should be made to limit the ur of the absolute
Yli • 41 {1) 1y I ° I,,)

values of the errors in each of the pair of y/1(L1), 2 2.a which are used

to 5 percent of y. . Although it will usually be necessary for the designer to exercise judg-

ment in selecting proper boundary values, a few more common cases will be discussed here.

In all the examples that follow it will be assumed that the material is ductile and of the ideally

plastic type. In other words, it has a 3tress-strain curve which can be approximated by a

linear elastic curve terminating in-a well-defined plateau-type yield.* It will b6 assumed that,

for these cases,.only 1, and AF, can be varied to'attain the maximum collapse pressure.

SYMMETRICAL HEAVY FRAME OR BULKHEAD

By a bulkhead is meant.a structure for which it may be assumed that all deflections are

zero, i. e., y (I,) = 0. It is, therefore, only a special case of a heavy frame located so that

it may be assumed to be symmetrically loaded. For the heavy frame there are two possibilities

to consider; (1) a "plastic hinge" is formed in the shell at the frame, or (2) partial or no yield-

ing occurs near the frame prior to collapse. Since in case (1) only local yielding will occur,

it is assumed for the first case that the tangent to a generator will rotate at the bulkhead or

heavy frame i. e., y" (0.4*' For the second case it is assumed that no rotation occurs and
y1 { V1) . 0.

For the first case, then, two conditions at the frame are known. The first, which comes

from equilibrium (see Equation [13c]) and symmetry (i.e., equal deflections and shear forces on

either side of the. frame), is

" '(I"I) (AF + bh)o 20 (11  0
- + boa b 1y ('l) - b0ays -2 a2f2 a 0 [36)

2a 3 boh

Here the subscript 0 refers to the heavy frame. The second condition is based on the maximum

strength of the material at the frame which occurs under the assumed equilibrium stress dis-

tribution of Figure 4. It is P, R

Y 7
j +?$ P1 2ho A ( 1 + [87

- I-
2a.2 2 \PR 2hc P R .7 2

*other types or material are beyond the scope of this report.

,16



h, PC R/2

h -.-- -- , A h

(___ _ (hh+ PC ) 02

Figure 4 - Assumed Stress Condition at- Formation of Plastic Hinge

If shear stresses are neglected, 'the Hencky-Von Mises criterion of yielding gives:

- 1 (1- 2p) - (1-( 4 [8&]

12(V + t,2)+_

•'•9(..,+v) 2t ,) - V4 -vt b,-4 [88b]

where a. is the yield stress in a one-dimensional stress field (assumed to be the same in

tension and compression). Since a1 and a 2 are nonlinear functions of y1(11), it is easier to

make a preliminary estimate of y1(ll) and then to compute these stresses directly. Stresses

so obtained will usually be sufficiently accurate.

Combining Equations [36], [84a], [34b],"[,34d], and [51 with x - 11 gives:

AFý % A
Ym .. f1(0) +(4 Ap (20Fo

a(A +,B• (h) H 04 ('2 (') 4Y9)-

9 Lz( 1) a + bh)O 
'

Combining Equation [37] with Equations [84c] and [5c] gives:

17
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*/ where 1 -R2Ao /P0 f. Mlimi,•kion of 8 from Equations [391 and (401yields

&( + .- 1 1-7 }

g3 01~) A[ 411

(11 - (202,292 (11 ) + 4 (111 +-+ (W3 (1) °

*(Ap + 6A) 0

The smallest value of 11 which satisfies Equation [41) is the desired solution. Since for 1t

near 1, 4b is an approximately linearly decreasing function of I,, Equation [411 can usually be

solved most easily as follows:

Step 1: Compute 0 (1)"

Step 2: If 5 ,(1) < 0; compute j& (0.9 L).
If 4t(l) > 0; compute 40 (1.11).

Step 3: Compute 1 tby a linear interpolation.

If S61 (1) < 0, then

-Alm -4 014(0-9J) < I [42a]

If 1 (1) > 0, then
[10.1 91, (-1

This process may, of course, be repeated for more accuracy. -. or the case of partial or no

yielding at the heavy frame, we assume y'(Z1" ) - 0. It follows from Equation [84b] that

Equation [401 can be replaced by

Ar
l'-"7 f2 (1i) -a g9 (11) [431

*More accuracy may be obtained by computing an intermediata value of and passing a circle througtrh i

three values graphically.
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Then the expression analogous toEquation [411 is

h A 1 Ar
021 (1) . + 7(A-+ [Žf 4 (I,) -bo@J -__ fl (11)

h . + f2 (t)- =0 (441

, (1 (A + b19) J 1

The solution is by the same method as that used for Equation [411. The correct value of 1t

is then, of course, the smaller of the two values satisfying, Equations [41] and [44]. It is

obvious that Equation (411 will usually apply to bulkheads and very heavy frames, while

Equation [441 will apply to moderately heavy frames. The transition point will vary depending

on the geometry of the cylinders and the lighter-frames. Having I1, A AFl is obtained from

Equations [33] and [,9] as"

AAFp -V - 1 fl ("1) + o(AF + b)o' -[(2022f 2 (11) + f4 (11)) - bo]

AFA
_ ] a+ (202p2g2 (11) + 94 (1} [4511l -H- 01 [( 1 11 (A 6

+ k)
For the rigid bulkhead•A + is allowed to go to zero in Equations [411 and (451. Some-

For tr b)

times, where a nearly rigif bulkhead is present, the actual radial deflection of the bulkhead

may be known from previous experimental data more accurately than an effective area can be

computed. Then it is simply a matter of replacing

([ ",, }a y, bo" - (2 a2012 f 2 (y1 + f4 (1 8 [o2a2#2(90) + 94"ASa(Air + Wo A-i

by y1 (l1) in Equation [391. Then an equation analogous to Equation [41) results:

00 - F) /IF~ + -2 +9 Hli AY-(1
22- Y) ____ 0- g, 1 -

Ap+ f (11) 0 ..- •

and Equation (45] is replaced by

A •A Al A (t)-(r A -F f ( (ll 47]
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INTERSECTIONS

At an axisymmetric intersection of a cylinder with another shell such as a transition

cone or an ellipsoidal or hemispherical cap, the simplest method of design is to estimate the

deflection at the intersection by some approximate analysis or to compare the proposed struc-

ture with available experimental results. Then Equations (461 and M47] can be used, or, for

relatively large positive (inward) deflections, Equation (46] should be replaced by a modified

Equation [441. 4

. -1 V f2 2(l1)in" (481

Of course, if there is sufficient knowledge of the contiguous shell near the, intersection
at high pressure, a more detailed analysis can be made from conditions of continuity and
equilibrium at the intersection. However, this will usually involve more work than is practical.

20
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APPENDIX B

NUMERICAL EXAMPLE

A numerical example is provided to illustrate the procedure for deeignig an end bay

and frame. The pertinent scantlings and material properties are

R - 8.4180 in. RP - 8.8464 in.
A - 0.0-858 in. -= 0.80

I - 1.3217 in. " - 8 x 107 psi

b - 0.0448 in. - 66,400 psi

AF - 0.0516 in.

The cylinder is closed by a rigid bulkhead [y, (11) 0], and Pe is estimated to be 1000 psi. The

computation is facilitated by use of an instruction sheet. The first column of the instruction

sheet contains the item number in parentheses. The second column in'dicatesthe operation,

the result of which is to be recorded in the third column. Numbers in parentheses in the second

column are item numbers and indicate that the operation is to be performed on the quantity

recorded in that item, e.g., (2) (84) means multiply the quantity in Item 2 by the quantity in

Item 34, whereas 2(34) means multiply the number 2 by the quantity in Item 84. The first quan-

tity in Item 84 is always ± 0.1 depending upon the sip of 03 (1), Item 88. The subsequent

values are entered from the previous interpolation in Item 121. The last value in Item 86 is

the correct value of I1 , and Item 126 cont..:ns the ratio AF1 / AF . Thus L1 , the distance

from the bulkhead to the center of the first frame, is obtained from 1, by adding b/2, and Ajp

is obtained by multiplying AF by Item 126. In the example which follows the interpolation

was carried out three times in order to demonstrate that the first interpolation is sufficiently

accurate for design purposes.
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End Bay Design Calculation Varying LI and AF

Item Operation, Result Item Opefation Result

(1) R 8.4180 (44) (15)(43)/(7) 0.265078
(2) 1 0.0858 (45) 1-(44) 0.734922
(3) L 1.3217 (46) 14i(44) 1.265078
() 6 R 0.0443 (47) f(4 5) 0.857276S, (5) AF - 0.0491 (48) 0 6) L124757

(6) F 0.3 (49) (47)(48) 0.964227
(7) E 3x 101 (50) (3) (42) 1.99906
(8) e 66,400 (51) (47)(50) 1.7137
(9) P. 1,000 (52) (48) (50) 2.2485

(10) Y, (11) 0 (53) cosh (51) 2.86483
(i1) (6?2 0.09 (54) sloh (51) 2.68463
(12) 1-(6)( 11) 0.79 (55) cos (52) -0.62701
(13) 1-2(6) 0.4 (56) sin (52) 0.77901
(14) 3-3(11) L73 (57) (48)(54) 3.01969
(15) f(-14) J.65227 (58) (47) (56) 0.6678M
(16) 2-(6) 1.7 (59) (57)+(58) 3.68754
(17) (7)(10)/(1) 0 (60) (58)-(57) -2.35184
(18) (17)2 0 (61) (53)-(55) 3.49191
(19) (13)(17)/(12) 0 (62) (49)(61) 3.36499
(20) (8)2 44.0896x WS (63) (2)(4) 0.0038
(21) (12)(20) 34.8308x 106 (64) (5)+(63) 0.0529
(22) 4(21)-3 (18) 139.3232x *0 (65) 2(2)1/(42) 0.11346
(23) f(2-2 11.8035x 104 (66) (59)(64)+(65)(62) 0.57709
(24) (23)/(12) 14.9411x 104 (67) (5)/(66) 0L085082
(25) (24)+(19) 14.9411x 104 (68) (4)0(42) 0.067003
(26) (:1)/(2) 98.112 (69) (53)(56)/(48) 1.98434
(27) (9)(26) 9.8112x 104 (70) (54) (55,)/(47) -1.96349
(23) (25)/(27) 1.52286 (71) (53).(55) - L79623
(29) (28)- 1 0.52286 (72) (54)(56) 2.09153
(30) (28)1 1 2.52286 (73) (68)(72)/(49) 0.14534
(3M) (29) (30)/(28) 0.86620 (74) (44) (72)/(47) 0.64672
(32) (19)/(24) 0 (75) (71)-(74) -2.44295
(33) (29)(32)/(304 0 (76) (68)(75) -0.16368
(34) 1-(33) 1 (77) (69)-(70)+(73) 4.09317
(35) (31)(34) 0.86620 (78) (69)+(70)+(76) -0.14283
(36) (15)/(16) 0.97,192 (79) (59)(67) 0.31374
(37) (35)(36)/2 0.42094 (80) (60)(67) -0.20010
(38) (17)/(27) 0 (81) 1-(39)-(79) 0.68626
(39) 2(38)/(16) 0 (82) (78)(81)/(77) -0.02395
(40) (1)(2) 0.722264 (83) (37)+(8N)+(82) 0.19689
(41) (15)/(40) 2.28763

(42) (Y(41) 1.51249
(43) (26) (27)/2 4.81 298x 106

$Data
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Ike Olwtiwa Results

(84) (121) 40.1 4.0974 4.07035 4.07033

(85) 1-(84) 1.1 10974 1.07035 1.07033

(86) (3)(165) - 1.4139 1.4147 1.4147
1(17) (51)(1s) 1.8851 L8332 1.8343 1.6942

(N) (51)(84) -0.1714 -0.1195 4.1206 -0.1205

(89) ( 85) (35) 2.4734 2.4053 2.4067 2.4066

(90) (52) (M4) -0.2249 -0.156U -0.1582 -0.1581

(91) gosh (37) 3 3.365 3.206 32102 3.20"
(92) sian (87) 32176 3.0470 3.0505 3.0502

(93) cosh (a) 1.01472 1.00715 1.00728 1.00727
(94) sink (38) -0.17224 -0.11978 -0.12089 -0.12079
(95) cos (89) -0.78494 -0.74096 -0.74190 -0.74183

(96) sin (39) 0.61957 0.67155 0.67051 0.67059

(97) cos (90) 0.97482 0.96773 0.98751 0.98753
(98) sin(6) -0.22301 -0.15616 -0.15754 -0.15744

(99) (91) (90+(93) (96) -0.12272 0.17656 0.16966 0.17010
(100) (92) (97M÷(911) (95) 3.2717t 3.09837 3.1020M 3.10177

(101) (91) (96)/(48) 1.85602 1.91471 1.91372 1.91377
(102) (92) (95)1(47) -2.94610 -2.63353 -2.63"5 -2.63944

(103) (91) (9M) -2.64478 -2.37613 -2.38165 -2.33120

(104) (92)-(96) 1.99353 2.04621 2.045390 2.04543
(105) (68) (104)/(49) 0.13353 0.14219 0,14213 0.14213

(106) (44) (104)/(47) 0.61642 0.63271 0.63245 -

(107) (103)-(106) -3.26120 -3.00389 -3.01410 -

(108) (68)(107) -0.21851 -0.20160 -0.20195 -

(109) (47) (99) -0.10520 0.15050 0.14645 0.14582

(110) (48) (100) 3.67996 3.48491 3.48910 3.46874

(111) (109)+(110) 3.57476 3.63541 3.63455 3.63456
(112) (109)-(110) -3.78516 -3.33441 -3.34365 -

(113) (101)-(102)+(105) 4.94065 4.69048 4.69500 4.69534
(114) (101)+(102)+(108) -1.30859 -0.92041 -0.92818 -

(115) (67)(111) 0.30415 0.30931 0.30923 0.30924
(116) (67)(112) -0.32205 -0.28370 -0.28446 -

(117) 1.-(3t)-(115) 0.6965 0.69069 0.69077 0.69076

(111) (114)-(117)/(113) -0.18430 -4.13554 -0,13654 -

(119) (37)+(116)+(111) -0.08341 0.00170 -0.0000t -

(120) (W3)-(119) 0.28230 0.19519 0.19695 -

(121) (84) (83)1/(120) -0.06974 -0.07035 -0,07033 -

(122) 1-(79) - 0.68626 0.68626 0.68626

(123) (122)(113) - 3.21889 3.22254 3.22222

(124) (65)/2 - 0.05673 0.05673 0.05673

(125) (117)(124)/(123) 0.01217 0.01216 0.01216

(126) 1+(125)/5 - 1.248 1.248 1.248
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